First Semester

1st Nine Week
(August $16^{\mathrm{h}}-0$
(September $6^{\text {th }}$
(October $11^{\text {th }}-$
TEKS
A.2D, A.5A*,
A.10A, A.10C,

A.2A*, A.2H,
A.3C*, A.3E,
A.12A, A.12B
A.2B, A.2C*, A.3A, A.3B*,

Linear Expressions and Equations

Students define polynomial expressions and perform operations with polynomials of degree one, including rewriting a polynomial to an equivalent form when distributing by a rational scale factor. Students make connections between expressions and equations, and solve linear equations in one variable, including variables on both sides and the application of the distributive property. Students model both mathematical and real-world problem situations using equations. Students solve mathematical formulas, scientific formulas, and other literal equations for a specified variable. Students write and solve problems involving direct variation.

Investigation of Linear Functions

Students decide whether relations represented verbally, tabularly, graphically, and symbolically define a function. Students determine domain (continuous and discrete) and range of linear functions representing domain and range using inequality notation and verbal descriptions for mathematical problems. Students determine the reasonableness of domain (continuous and discrete) and range in real-world situations. Students evaluate functions, expressed in function notation, given one or more elements in their domains. Students graph linear functions on the coordinate plane given tables, verbal descriptions, and algebraic generalizations. Students graph linear functions in two variables, identify key features, including x-intercept, y-intercept, zeros, and slope, in mathematical and real-world problems. Students determine the effects on the graph of the parent function $f(x)=x$, including multiple parameter changes within one linear function.

Application of Linear Functions

Students calculate the rate of change for a linear function in mathematical and real world problems from tables, graphs, and algebraic methods. Students determine the slope of a line given a table, graph, two points on the line, and an equation written in various forms. Students make connections between rate of change and slope of the line. Students write linear equations in two variables from given information, including a table of values, a graph, a verbal description, one point and the slope, two points, and represent the linear equations in various forms. Students write linear functions for real-world situations, and model the linear functions using various representations. Students determine whether the slope of a line is zero or undefined.

2nd Nine Weeks - 43 Days
(October $14^{\text {th }}-$ December $1^{\text {th }}$)
(November $22^{\text {nd }}-26^{\text {th }}-$ Thanksgiving Break)
(December $20^{\text {th }}-$ December $31^{\text {st }}-$ Holiday Break)

TEKS

A. $4 \mathrm{~A}, \mathrm{~A} .4 \mathrm{~B}$,
A. $4 \mathrm{C}, \mathrm{A} .2 \mathrm{E}$,
A. $2 \mathrm{~F}, \mathrm{~A} .2 \mathrm{G}$
A.2I, A.3F,
A.3G, A.5C*
A. $5 \mathrm{~B}, \mathrm{~A} .2 \mathrm{H}$,
A.3D*, A.3H

Application of Linear Functions (con't)

 and represent the linear equations in various forms.
Systems of Linear Equations

 elimination methods.Students write, with and without technology, linear functions, analyze the strength of the linear function using scatterplots and linear correlations, compare association and causation between the variables, and estimate solutions and make predictions in terms of the problem situation. Students write linear equations in two variables from a graph, given one point and the slope, two points, a point and parallel to a given line, a point and perpendicular to a given line, or a line parallel or perpendicular to the x - or y-axis,

Students analyze a table of values representing a system of two linear equations in two variables and determine the solutions, if they exist. Students graph systems of two linear equations in two variables on the coordinate plane and determine the solutions, if they exist. Students solve systems of two linear equations with two variables for mathematical problems, including substitution and

Linear Inequalities and Systems of Linear Inequalities
Students solve linear inequalities in one variable, including variables on both sides and the application of the distributive property. Students model both mathematical and real-world problem situations using inequalities. Students graph the solution set of systems of two linear inequalities in two variables on the coordinate plane, and formulate and solve graphically two linear inequalities in two variables in real-world problem situations and justify the solution. Students write linear inequalities in two variables given a table of values, a graph, and a verbal description; and graph the solution set of linear inequalities in two variables on the coordinate plane.

Second Semester

3rd Nine Week (January $3^{\text {rd }}-\mathrm{M}$ (January 17 ${ }^{\text {th }}-$ (March $7^{\text {th }}-11^{\text {t }}$	44 Days ch $4^{\text {th }}$) LK - No School) Spring Break)	4th Nine Weeks - 51 Days (March $14^{\text {th }}-$ May $25^{\text {th }}$) (April 8th - Good Friday - No School) (April 15 ${ }^{\text {th }}$ - Battle of Flowers - No School)	
TEKS		TEKS	
A.11A, A.11B* $\begin{aligned} & \text { A.6A*, A.7A*, } \\ & \text { A.7C*, A.10A, } \\ & \text { A.10B, A.10C, } \\ & \text { A.10D, } \\ & \text { A.10E*, A.10F } \end{aligned}$	Laws of Exponents Students simplify numeric and algebraic expressions and solve equations using the laws of exponents, including integral and rational exponents and simplifying radical expressions. Quadratic Functions Part 1: Students perform operations (addition, subtraction, multiplication) with polynomials of degree one and degree two, including rewriting a polynomial to an equivalent form using the distributive property. Part 2: Students graph quadratic functions on the coordinate plane identifying key attributes, including y-intercept, x-intercept(s), zeros, maximum value, minimum value, vertex, and the equation of the axis of symmetry, when applicable. Students determine the effects on the graph of the parent function $f(x)=x^{2}$ when $f(x)$ is replaced by $\operatorname{af}(\mathrm{x}), \mathrm{f}(\mathrm{x})+\mathrm{d}, \mathrm{f}(\mathrm{x}-\mathrm{c}), \mathrm{f}(\mathrm{bx})$ for specific values of a, b, c , and d and identify effects of parameter changes of quadratic functions in terms of the problem situation. Students determine the domain and range of quadratic functions and represent the domain and range using inequalities	A.6B, A.6C, A.7B, A.8A* A.8B A.9A, A.9B, A.9C*, A.9D*, A.9E A.12C, A.12D	Quadratic Functions con't Part 3: Students apply the distributive property to factor out the greatest common factor of the terms in a polynomial expression. Students also factor binomials (difference of two squares) and factor trinomials $\left(a x^{2}+b x+c\right)$ having real roots, including perfect square trinomials of degree two, and justify the results by multiplication. Students describe the relationship between the linear factors of quadratic expressions and the zeros of their associated functions and write quadratic functions when given real solutions and graphs of their related equations. Students write equations of quadratic functions given the vertex and another point on the graph, in vertex form and rewrite the equation from vertex form to standard form. Students formulate quadratic functions for real-world problem situations over an appropriate domain and range given various attributes, identify key attributes in terms of the problem situation, and justify the meaning of key attributes in terms of the problem situation. Students will solve quadratic equations using factoring, square roots, completing the square, and the quadratic formula. Exponential Functions Students graph exponential functions that model growth and decay. Students identify key features, including y-intercept and asymptote, and determine the domain and range of exponential functions in the form $f(x)=a b^{x}$, representing the domain and range using inequality notation and verbal descriptions Students interpret the effect of the values a and b in exponential functions in the form $f(x)=a b^{x}$ and write exponential function in the form $f(x)=a b^{x}$ (where b is a rational number greater than 0) to describe problems arising rom mathematical and real-world situations, including growth and decay. Students use technology to write exponential functions that provide a reasonable fit to data to estimate solutions, make predictions, and justify solutions in terms of the problem situation for real-world problems and data collection activities. Sequences Students define and identify terms of arithmetic and geometric sequences when sequences are given in recursive, explicit, and function notation using recursive processes. Students write a formula for the $\mathrm{n}^{\text {th }}$ term of arithmetic and geometric sequences in recursive, explicit, and function notation, given the value of several of their terms. Students connect arithmetic sequences to linear functions, graph sequences on the coordinate plane, and compare key attributes of the representative function and sequence in mathematical and real-world problems. Students connect geometric sequences to exponential functions, graph sequences on the coordinate plane, and compare key attributes of the representative function and sequence in mathematical and real-world problems. Students compare and contrast arithmetic and geometric sequences in real-world problems and data collections.

