First Semester

2nd Nine Weeks - 43 Days
(October $14^{\text {th }}-$ December $1^{\text {th }}$)
(November $22^{\text {nd }}-26^{\text {th }}-$ Thanksgiving Break)
(October $11^{\text {th }}-$ Staff Development)
(December $20^{\mathrm{th}}-$ December $31^{\text {st }}-$ Holiday Break)

TEKS

A.2D, A.5A*,

A.10A, A.10C,

A10.D
A.2A*, A.2C*, A2H,
A.3A, A.3B*, A.3C*,
A. 3 E
A.2B, A.2C*, A.3A, A.3B*, A.3C*,
A. $12 \mathrm{~A}, \mathrm{~A} .12 \mathrm{~B}$

Linear Expressions and Equations

Students define polynomial expressions and perform operations with polynomials of degree one, including rewriting a polynomial to an equivalent form when distributing by a rational scale factor. Students make connections between expressions and equations, and solve linear equations in one variable, including variables on both sides and the application of the distributive property. Students model both mathematical and real-world problem situations using equations. Students write and solve problems involving direct variation. Students solve linear inequalities in one variable, including variables on both sides and the application of the distributive property.

Investigation of Linear Functions

Students graph linear functions on the coordinate plane given tables, verbal descriptions, and algebraic generalizations. Students also calculate the rate of change for a linear function in mathematical and real world problems from tables, graphs, and algebraic methods. Students determine the slope of a line given a table, graph, two points on the line, and an equation written in various forms. Students make connections between rate of change and slope of the line. Students graph linear functions in two variables, identify key features, including x-intercept, y-intercept, zeros, and slope, in mathematical and real-world problems. Students determine the effects on the graph of the parent function $f(x)=x$, including multiple parameter changes within one linear function. Students determine domain (continuous and discrete) and range of linear functions representing domain and range using inequality notation and verbal descriptions for mathematical problems. Students determine the reasonableness of domain (continuous and discrete) and range in real-world situations.

Application of Linear Functions

Students write linear equations in two variables from given information, including a table of values, a graph, a verbal description, one point and the slope, two points, and represent the linear equations in various forms. Students write linear functions for real-world situations, and model the linear functions using various representations. Students determine whether the slope of a line is zero or undefined. Students identify, x-intercept, y-intercept, zeros, and slope and the meaning of the key attributes in terms of the situation. Students solve linear inequalities in one variable, including variables on both sides and the application of the distributive property.

TEKS

A. $4 \mathrm{~A}, \mathrm{~A} .4 \mathrm{~B}$,
A. $4 \mathrm{C}, \mathrm{A} .2 \mathrm{E}$,
A. $2 \mathrm{~F}, \mathrm{~A} .2 \mathrm{G}$
A.2I*, A.3F, A.3G, A.5C*
A.2A*, A3H,

Application of Linear Functions (con't)

Students write, with and without technology, linear functions, analyze the strength of the linear function using scatterplots and linear correlations, compare association and causation between the variables, and estimate solutions and make predictions in terms of the problem situation. Students write linear equations in two variables from a graph, given one point and the slope, two points, a point and parallel to a given line, a point and perpendicular to a given line, or a line parallel or perpendicular to the x - or y-axis, and represent the linear equations in various forms.

Systems of Linear Equations

Students analyze a table of values representing a system of two linear equations in two variables and determine the solutions, if they exist. Students graph systems of two linear equations in two variables on the coordinate plane and determine the solutions, if they exist. Students solve systems of two linear equations with two variables for mathematical problems, including substitution and elimination methods.

Linear Inequalities and Systems of Linear Inequalities

Students model both mathematical and real-world problem situations using inequalities. Students graph the solution set of systems of two linear inequalities in two variables on the coordinate plane, and formulate and solve graphically two linear inequalities in two variables in real-world problem situations and justify the solution. Students write linear inequalities in two variables given a table of values, a graph, and a verbal description; and graph the solution set of linear inequalities in two variables on the coordinate plane. Students formulate, estimate, and solve systems of equations in real-world problem situations and justify the solutions in terms of the situation. Students make predictions and critical judgments, and justify the solution in terms of the problem situation.

Second Semester

| | | Students compare and contrast arithmetic and geometric
 sequences in real-world problems and data collections. |
| :--- | :--- | :--- | :--- |

