First Semester			Second Semester		
$1^{\text {st }}$ Nine Weeks - 40 days			$3^{\text {rd }}$ Nine Weeks - 45 days		
TEKS P.1A, P.1B, P.2A, P.2B, P.2C, P.2D, P.2E, P.2F, P.2G, P.2H, P.2I, P.2J, P.3A, P.3B, P.3C, P.3D, P.3E, P.4A, P.4B, P.4C	Scientific process and math review (5 days) Students will review the scientific process and be able to describe how physics relates to the other areas of science. Students will review algebraic methods of solving literal equations and trigonometry. 1 dimensional kinematics (20 days) Students will investigate the relationship between acceleration, velocity and position. Students will derive and use the equations of motion to solve problems. 2 dimensional kinematics (15 days) Students will use the properties of projectile motion to solve problems. Students will use vector addition to find relative velocity.		TEKS P.1A, P.1B, P.2A, P.2B, P.2C, P.2D, P.2E, P.2F, P.2G, P.2H, P.2I, P.2J, P.3A, P.3B, P.3C, P.3D, P.3E, P.6C, P.6D, P.6E, P.7A, P.7B, P.7C, P.7D, P.7E	Cons Stud calcu asso and Ther Expla the f proc Wave Expla the f proc	of momentum (10 days) nvestigate and be able to issing values in problems h conservation of momentum mics (10 days) day examples that illustrate of thermodynamics and the hermal energy transfer. s) day examples that illustrate f thermodynamics and the ermal energy transfer.
$2^{\text {nd }}$ Nine Weeks - 43 days			$4^{\text {th }}$ Nine Weeks - 45 days		
TEKS P.1A, P.1B, P.2A, P.2B, P.2C, P.2D, P.2E, P.2F, P.2G, P.2H, P.2I, P.2J, P.3A, P.3B, P.3C, P.3D, P.3E, P.4D, P.5A, P.5B, P.6A, P.6B, P.6C, P.6D	Dyn Stud of m diag miss Univ Stud grav nucl Stud the betw mas cent Wor Stud calcu asso wor	s (15 days) will investigate Newton's 3 laws Students will draw free body to find resultant forces or find orces. Gravitation (5 days) will describe the concepts of nal, electromagnetic, weak and strong nuclear forces. will Describe and calculate how tude of the gravitational force wo objects depends on their d the distance between their d Energy (15 days) will investigate and be able to for missing values in problems d with conservation of energy, gy theorem and power.	TEKS P.1A, P.1B, P.2A, P.2B, P.2C, P.2D, P.2E, P.2F, P.2G, P.2H, P.2I, P.2J, P.3A, P.3B, P.3C, P.3D, P.3E, P.5A, P.5C, P.5D, P.5E, P.5F, P.8A, P.8B, P.8C, P.8D	Elect (12 d Descr of the and id electr life. Curre Inves differ used in bot Atom days) Descr dual n the em Calcu the m	magnetic forces and fields alculate how the magnitude force between two objects describe examples of agnetic forces in everyday ricity(16 days) d calculate current, potential ss, resistance, and power c circuit elements connected and parallel combinations. ar and Quantum Physics (7 hotoelectric effect and the light. Compare and explain pectra produced by atoms. describe the applications of gy equivalence.
Resources					
1st Nine Weeks		2nd Nine Weeks	3rd Nine Weeks		4th Nine Weeks
Physics (Serway-Faughn)		Physics (Serway-Faughn)	Physics (Serway-Faughn)		Physics (Serway-Faughn)

